Content Analysis
An Introduction to Its Methodology

Klaus Krippendorff
University of Pennsylvania
CHAPTER 2

Conceptual Foundation

Content analysis has its own approach to analyzing data that stems largely from how the object of analysis, content, is conceived. This chapter defines content analysis, develops a conceptual framework through which the purposes and processes of content analysis may be understood in general terms, outlines the essential concepts of content analysis, and contrasts content analysis with other social science methods of inquiry.

2.1 DEFINITION

Content analysis is a research technique for making replicable and valid inferences from texts (or other meaningful matter) to the contexts of their use.

As a technique, content analysis involves specialized procedures. It is learnable and divorceable from the personal authority of the researcher. As a research technique, content analysis provides new insights, increases a researcher's understanding of particular phenomena, or informs practical actions. Content analysis is a scientific tool.

Techniques are expected to be reliable. More specifically, research techniques should result in findings that are replicable. That is, researchers working at different points in time and perhaps under different circumstances should get the same results when applying the same technique to the same data. Replicability is the most important form of reliability.

Scientific research must also yield valid results, in the sense that the research effort is open for careful scrutiny and the resulting claims can be upheld in the face of independently available evidence. The methodological requirements of reliability and validity are not unique to but make particular demands on content analysis.
The reference to text in the above definition is not intended to restrict content analysis to written material. The phrase "or other meaningful matter" is included in parentheses to indicate that in content analysis works of art, images, maps, sounds, signs, symbols, and even numerical records may be included as data— that is, they may be considered as texts—provided they speak to someone about phenomena outside of what can be sensed or observed. The crucial distinction between text and what other research methods take as their starting point is that a text means something to someone, it is produced by someone to have meanings for someone else, and these meanings therefore must not be ignored and must not violate why the text exists in the first place. Text—the reading of text, the use of text within a social context, and the analysis of text—serves as a convenient metaphor in content analysis.

In the content analysis literature, scholars have provided essentially three kinds of definitions of this research method:

1. Definitions that take content to be inherent in a text
2. Definitions that take content to be a property of the source of a text
3. Definitions that take content to emerge in the process of a researcher analyzing a text relative to a particular context

Each of these kinds of definitions leads to a particular way of conceptualizing content and, consequently, of proceeding with an analysis.

Berelson's original definition of content analysis is an example of the first kind. Berelson (1952) defined content analysis as "a research technique for the objective, systematic and quantitative description of the manifest content of communication" (p. 18). His requirement that content analysis be "objective" and "systematic" is subsumed under the dual requirements of replicability and validity in our definition. For a process to be replicable, it must be governed by rules that are explicitly stated and applied equally to all units of analysis. Berelson argued for "systematicity" in order to combat the human tendency to read textual material selectively, in support of expectations rather than against them. Our requirement of validity goes further, demanding that the researcher's processes of sampling, reading, and analyzing messages ultimately satisfy external criteria. Replicability is measurable and validity is testable, but objectivity is neither.

Our definition of content analysis omits three of Berelson's further requirements. One is his insistence that content analysis be "quantitative." Although quantification is important in many scientific endeavors, qualitative methods have proven successful as well, particularly in political analyses of foreign propaganda, in psychotherapeutic assessments, in ethnographic research, in discourse analysis, and, oddly enough, in computer text analysis. The ability of computers to crunch words as well as numbers is well-known. When a computer program is used to analyze words, the algorithms that determine the program's operation must embody some kind of theory of how humans read texts, rearticulate texts, or justify actions informed by the reading of texts. Reading is
fundamentally a qualitative process, even when it results in numerical accounts. By including the attribute "manifest" in his definition, Berelson intended to ensure that the coding of content analysis data be reliable; this requirement literally excludes "reading between the lines," which is what experts do, often with remarkable intersubjective agreement (I will have more to say on this topic later in this chapter).

My chief objection to Berelson's definition, and numerous derivatives of that definition, is related to his phrase "description of the manifest content of communication." It implies that content is contained in messages, waiting to be separated from its form and described. Berelson felt no need to elaborate on the crucial concept of "content" in his definition because for him and his contemporaries, at the time he was writing, there seemed to be no doubt about the nature of content—it was believed to reside inside a text.

Berelson's operationalization of the attribute "manifest" is telling. If sources, receivers, and content analysts have different interpretations of the same message, which is quite natural, Berelson's definition restricts content to what is common to all of these accounts, what everyone can agree to. Gerbner (1985) starts from a similar assumption when he insists that mass-media messages carry the imprint of their industrial producers. For him, too, content is right there to be described for what it is. However, Gerbner goes beyond Berelson's notion by suggesting that the messages of the mass media are revealed in statistical accounts of their contents. Mass-media audiences, he suggests, are affected by certain statistical properties of mass-produced messages of which neither mass producers nor mass audiences are conscious. This privileges content analysts' accounts over the readings by audience members. Shapiro and Markoff's (1997) definition equates content analysis with scientific measurement as well, specifically, with "any systematic reduction . . . of text (or other symbols) to a standard set of statistically manipulable symbols representing the presence, the intensity, or the frequency of some characteristics relevant to social science" (p. 14). Its implicit representationalism is common in several definitions of content analysis. For example, in a recent textbook, Riffe, Lacy, and Fico (1998) start with the proposition that content is central to communication research but then assert that the purpose of content analysis is to describe "it" so as to make "it" amenable to correlations with other (noncontent) variables—as if content were a variable or thing inherent to mass-media messages. These examples demonstrate that the container metaphor for meaning still abounds in much of the communication research literature (Krippendorff, 1993). The use of this metaphor entails the belief that messages are containers of meaning, usually one meaning per message, and justifies calling any analysis of any conventionally meaningful matter a content analysis, regardless of whether it counts words or offers in-depth interpretations. Clearly, this is an insufficient way to define content analysis.

Definitions of the second kind distinguished above tie the content analysis of texts to inferences about the states or properties of the sources of the analyzed texts (Krippendorff, 1969a, p. 70; Osgood 1959, p. 35). Shapiro and Markoff (1997), among others, have criticized such definitions as too limiting. Holsti
(1969, p. 25) elaborates on this idea by committing content analysis to an encoding/decoding paradigm in which message sources are causally linked to recipients through encoding processes, channels, messages, and decoding processes. Holsti wants the content analyst to describe the characteristics of communications in terms of "what," "how," and "to whom" in order to infer their antecedents in terms of "who" and "why" and their consequences in terms of "with what effects." The last of these could be determined more directly if sources and recipients were accessible to observation or were able to inform the analyst honestly. When antecedents and consequences are not accessible to direct observation, the analyst must make inferences. I am sympathetic to Holsti's logic, but putting sources—senders and/or receivers—in charge of the validity of the inferences may not be the best way for the content analyst to capture all of the communicators' intents. Moreover, describing message characteristics in terms of "what," "how," and "to whom" fails to acknowledge the analyst's own conceptual contributions to what constitutes the appropriate reading of the analyzed texts and the relevance of this reading to a given research question.

The analyst's conceptual contributions to the reading of a text are specifically recognized in an approach called ethnographic content analysis (Altheide, 1987); unfortunately, however, this approach has not been clearly defined. Proponents of ethnographic content analysis oppose the sequential nature of traditional content analysis, suggesting instead that analysts be flexible in taking into account new concepts that emerge during their involvement with texts. This approach acknowledges the theory-driven nature of content analysis but also demands that the analytical process be closely linked to the communicators studied. Ethnographic content analysis is emic rather than etic in intent; that is, it attempts to rely on indigenous conceptions rather than on analysts' theory-imposed conceptions. Although the preference for communicators' conceptions would appear to tie ethnographic content analysis to the second kind of definition noted above, by urging researchers to reflect on their involvement in the process, the approach acknowledges the possibility that researchers' theories can play a role in how analysis proceeds. The latter ties it more closely to the third kind of definition of content analysis, which we now explore.

EPISTEMOLOGICAL ELABORATIONS

The definition of content analysis offered at the opening of this chapter is of the third kind. It focuses attention on the process of content analysis and does not ignore the contributions that analysts make to what counts as content. The key to the definition lies in the operations that define the nature of content analysis data. Most content analysts probably realize that the starting points of their analyses, texts (printed matter, recorded speech, visual communications, works of art, artifacts), are quite unlike physical events in that they are meaningful to others, not just to the analysts. Recognizing meanings is the reason
that researchers engage in content analysis rather than in some other kind of investigative method. A content analyst must acknowledge that all texts are produced and read by others and are expected to be significant to them, not just to the analyst. Inasmuch as linguistically competent communicators are able to transcend the physical manifestations of their messages and respond instead to what those messages mean to them, content analysts cannot remain stuck in analyzing the physicality of text—its medium, characters, pixels, or shapes. Rather, they must look outside these characteristics to examine how individuals use various texts. It would follow that the popular measurement model for conceptualizing content analysis, borrowed from mechanical engineering and widely used in the natural sciences and behavioral research, is misleading; it implies that there is something inherent to text that is measurable without any interpretation by competent authors, readers, users, and—we need to include—culturally competent analysts. Below, I elaborate on six features of texts that are relevant to our definition of content analysis.

1. Texts have no objective—that is, no reader-independent—qualities. Seeing something as a text entails an invitation, if not a commitment, to read it. Regarding something as a message implies that someone is trying to make sense of it. Accepting particular markers as data entails taking them as an unquestionable ground for subsequent conceptualizations. Thus texts, messages, and data arise in the process of someone engaging with them conceptually. A text does not exist without a reader, a message does not exist without an interpreter, and data do not exist without an observer. In a content analysis, it is methodologically trained researchers who, being familiar with their texts, design the analysis, instruct their coders to describe textual elements, and end up interpreting the results—always in the expectation of others’ understanding. There is nothing inherent in a text; the meanings of a text are always brought to it by someone. Ordinary readers and content analysts merely read differently.

2. Texts do not have single meanings that could be “found,” “identified,” and “described” for what they are. Just as texts can be read from numerous perspectives, so signs can have several designations and data can be subjected to various analyses. One can count the characters, words, or sentences of a text. One can categorize its phrases, analyze its metaphors, describe the logical structure of its constituent expressions, and ascertain its associations, connotations, denotations, and commands. One can also offer psychiatric, sociological, political, or poetic interpretations of that text. All of these accounts may be valid but different. Untrained analysts may be overwhelmed by these choices. Researchers who pursue content analysis according to the first of the above definitions are led to believe that a message has but one content, all other meanings being deviant, wrong, or subjective, and hence excluded. This naive belief is an entailment of the unreflecting use of the container metaphor. Perhaps the term content analysis was ill chosen for this reason. The possibility that any text may have multiple readings renders the frequently published claims by some researchers that they have a kind of

3. Th

greem simpli

Dem an

domai

tions," an

happe

allowe

tent ar

stories t

ations infor

to see leagu

of the de

schor

t true. C

edge th

when c

4. Mea

conven

the mo

ent:

ou of ev

in the m

s, stori

of vari

thing el

futu

and ve

t of tex

ent is

Compu

compl

in the c
other kind of texts are problem, not just id instead to stuck in analyses. Rather, individuals use for conceptual and widely implies that interpretation—culturally are relevant ties. Seeing to read it. make sense unquestionably, and data text does not t, and data logically analysis, stesting the is nothing someone.

have analyzed the content of particular bodies of text untenable by our (third kind of) definition.

3. *The meanings invoked by texts need not be shared.* Although intersubjective agreement as to what an author meant to say or what a given text means would simplify a content analysis tremendously, such consensus rarely exists in fact. Demanding that analysts find a “common ground” would restrict the empirical domain of content analysis to the most trivial or “manifest aspects of communications,” on which Bercelson’s definition relies, or it would restrict the use of content analysis to a small community of message producers, recipients, and analysts who happen to see the world from the same perspective. If content analysts were not allowed to read texts in ways that are different from the ways other readers do, content analysis would be pointless. In fact, psychiatrists are expected to interpret the stories they hear from their patients in ways that differ from the patients’ interpretations. Anthropologists’ analyses of cultural artifacts need not conform to what informants say about those artifacts, and conversation analysts have good reasons to see verbal interactions in ways conversants might not. As Gerbner and his colleagues have shown through content analyses, mass-media audiences are not aware of the statistical trends in the qualities of popular heroes, the kinds of violence depicted, and the representations of minorities in television programming. Critical scholarship would be stifled if it could not go outside of what everyone accepts as true. Content analysis is in trouble only when expert interpretations fail to acknowledge the uses of texts by designated populations of readers or actors, particularly when content analysts fail to spell out the criteria for validating their results.

4. *Meanings (contents) speak to something other than the given texts,* even where convention suggests that messages “contain” them or texts “have” them. Probably the most distinctive feature of communications is that they inform their recipients, invoke feelings, or cause behavioral changes. Texts can provide information about events at distant locations, about objects that no longer exist, about ideas in people’s minds, about available actions—just as symbols represent things in their absence and stories walk their listeners through imagined worlds. Texts can also lead to responses of various kinds. All of these phenomena link the reading of present texts to something else. Whether these other phenomena concern purely mental constructions, past or future experiences, or hidden causes, the analyst must be able to conceive of them and verbalize them. It follows that content analysts must look outside the physicality of texts—for example, to how people other than the analysts use these texts, what the texts tell them, the conceptions and actions the texts encourage. This requirement is a key to understanding the limitations inherent in computer text analysis. Computers can be programmed to manipulate character strings in amazingly complex ways, but their operations remain confined to the conceptions of their programmers. Without human intelligence and the human ability to read and draw inferences from texts, computer text analysis cannot point to anything outside of what it processes. Computers have no environment of their own making; they operate in the contexts of their users’ worlds without understanding those contexts.
5. **Texts have meanings relative to particular contexts, discourses, or purposes.** Although diverse readings of a text are typical, the task of content analysts is far from hopeless. Messages always occur in particular situations, texts are read with particular intents, and data are informative relative to particular problems. Statisticians, linguists, anthropologists, psychiatrists, and political analysts all have their own discipline-based reasons for interpreting given assertions differently. A therapist and a conversation analyst will view the same conversation differently. A speech on economics may be analyzed for its political implications, for how well it presents certain arguments, for what the speechwriter knows about economics, or for the emotions it arouses. We explain these differences by the contexts within which analysts choose to listen to that speech. Differences in interpretations do not preclude the possibility of agreements within particular contexts, however. In fact, once content analysts have chosen the context within which they intend to make sense of a given text, the diversity of interpretations may well be reduced to a manageable number, sometimes to one.

Every content analysis requires a context within which the available texts are examined. The analyst must, in effect, construct a world in which the texts make sense and can answer the analyst’s research questions. A context renders perceptual data into readable texts and serves as the conceptual justification for reasonable interpretations, including for the results of content analysis. Often, analysts presuppose particular contexts based on their own disciplinary commitments, as in the above example about a speech on economics. Analysts working within particular disciplines, such as political science, rhetoric, economics, and psychology, hold particular theories concerning how texts are to be handled; that is, they are willing to accept only a certain context. Holsti’s encoding/decoding paradigm, mentioned above, functions as a prominent analytical context in communication research, but it is by no means the only one. The contexts that psychiatrists are willing to construct are very different from those that political scientists are likely to accept or within which literary scholars prefer to work. Once an analyst has chosen a context for a particular body of text and clearly understands that context, certain kinds of questions become answerable and others make no sense.

Just as the analytical contexts that content analysts must adopt may vary from one analysis to another, these contexts may also differ from the interpretive schemes that unaided listeners, viewers, or readers employ in reading their sensory data, the characters of their texts, and the messages they receive. The same body of texts can therefore yield very different findings when examined by different analysts and with reference to different groups of readers. For a content analysis to be replicable, the analysts must explicate the context that guides their inferences. Without such explicitness, anything would go.

6. **The nature of text demands that content analysts draw specific inferences from a body of texts to their chosen context—from print to what that printed matter means to particular users, from how analysts regard a body of texts to how selected audiences are affected by those texts, from available data to unobserved phenomena.**
Texts, messages, and symbols never speak for themselves. They inform someone. Information allows a reader to select among alternatives. It narrows the range of interpretations otherwise available. For the content analyst, the systematic reading of a body of texts narrows the range of possible inferences concerning unobserved facts, intentions, mental states, effects, prejudices, planned actions, and antecedent or consequent conditions. Content analysts infer answers to particular research questions from their texts. Their inferences are merely more systematic, explicitly informed, and (ideally) verifiable than what ordinary readers do with texts. Recognizing this apparent generality, our definition of content analysis makes the drawing of inferences the centerpiece of this research technique.

The element of “making inferences” is not entirely absent from other definitions of content analysis. For example, Stone, Dunphy, Smith, and Ogilvie (1966) define content analysis as “a research technique for making inferences by systematically and objectively identifying specified characteristics within a text” (p. 5). Although their inclusion of “within a text” here would suggest a commitment to “inherentist” conceptions of meaning, Stone et al. nevertheless recognize the inferential character of the processes of coding and categorizing textual material, in their case by computer. Their dictionary of fixed linguistic classifications of word meanings leads to semantically simplified representations of a text’s conventional readings. Other authors have equated inferences with statistical generalizations (e.g., Roberts, 1997), which do not, however, move into the context of textual matter. As early as 1943, Janis (1943/1965) pointed to the need for researchers to validate the results of content analyses of mass communications by relating research findings to audience perceptions and to behavioral effects. Our definition requires that content analysts be able to validate their results as well, whether those results are used to predict something, to inform decisions, or to help conceptualize the realities of certain individuals or groups. But validation becomes an issue only where inferences are specific and thus have the potential for failing.

Regarding the drawing of inferences, Merten (1991) paraphrases the essential elements of my definition of content analysis (Krippendorf, 1980b) when he writes, “Content analysis is a method for inquiring into social reality that consists of inferring features of a nonmanifest context from features of a manifest text” (p. 15; my translation). All theories of reading (hermeneutics) and theories of symbolic forms (semiotics), including theories of message meanings (communication/conversation theory), can be operationalized as processes of moving from texts to the contexts of the texts’ use. I would also suggest that a context is always constructed by someone, here the content analysts, no matter how hard they may try to objectify it. This is true even for ethnographers who believe that they can delegate the definition of the context to their informants’ world conceptions. It is the ethnographers who are held responsible for what they end up reporting. One cannot deny content analysts’ interest and conceptual participation in what their analysis reveals. Whether the analysts’ context coincides with the many worlds of others is a difficult question to answer. Whether the analysts’ world makes sense to their scientific peers depends on how compellingly the analysts present that world.
2.3 Examples

In this section, I offer some examples to illustrate how our definition of content analysis applies to practical situations.

Example 1. Consider the situation of wartime analysts of enemy broadcasts who want to gauge, among other phenomena, the popular support that enemy elites enjoy in their country. In peacetime, researchers could obtain such information directly, through public opinion surveys, for example, or by on-site observations. In wartime, however, information of this nature is difficult to get, if not deliberately concealed, and analysts are forced to use indirect means of obtaining it. The inability to use direct observation is an invitation to apply content analysis. Here, analysts are typically not interested in the literal meanings of enemy broadcasts, in the rhetorical devices political leaders use, or in judging whether individual citizens are being deliberately misled. In fact, wartime propaganda analysts have good reasons to overlook manifest contents and ignore their truths. To infer from enemy domestic broadcasts the extent of popular support for elite policies, the analysts must understand that the broadcasts are part of a complex communication network in which the mass-media system and political system interact with a population to make news acceptable. The propaganda analysts have to know something about the actors involved in the governing elite and in the military, about the media these actors have access to, and about other institutions that have a stake in current affairs. They must also have some knowledge of the political-economic processes that keep a country together and how the public tends to respond to mass-mediated messages. The picture they construct of what they are dealing with amounts to the context of their analysis. It connects the intercepted broadcasts to the phenomena of interest, whether they concern popular support of the governing elite’s policies, planned military actions, or evidence of war weariness.

Example 2. Historians are never mere collectors of documents. They offer reconstructions of past events that they deem consistent with current readings of all available documentary evidence. Historians are far removed from the worlds they wish to articulate. They cannot interview Julius Caesar, ask Homer about his sources for the *Iliad*, participate in the experiences of African slaves entering colonial America, or listen to conversations between Pablo Picasso and Henri Matisse. Historical figures reside in our readings of available documents, not in facts. And although some have left their writings to us, it is unlikely that they anticipated contemporary historians’ readings. Past happenings become comprehensible to us only by inferences from documents that have survived to the present (Dibble, 1963). Historians who infer past events from available texts are, by our definition, involved in content analysis. It is not surprising, therefore, that historians are keenly aware of the need to place the documents they analyze within the context of other relevant documents. Without the appropriate context, their analysis acquires little meaning.

Historiographers differ on theories of concept formation, on the best practices for content analysis, on the styles of writings. Historiographers have different defini-
context, a document means very little; a document placed in the wrong context acquires incorrect meanings, or at least meanings that may not make much sense. Historiographical methods organize available documents into webs of inferential relationships that may ultimately answer a historian’s questions.

Example 3. Psychological researchers have a long tradition of developing theories whose generalizability is established by repeated experiments. The subjects of psychological research must be present, however, making it difficult for researchers to study developmental issues and individuals who are available only through their writings. Expanding psychological research methods, Allport (1942) added personal documents, witness accounts, and letters to the repertoire of data amenable to psychological inquiries. The research he proposed amounts to content analysis by our definition: There are texts in the form of personal documents, diaries, letters, and recorded speeches, and researchers construct the contexts for analyzing these texts with the help of available theories concerning the correlations between what people say and a variety of psychological variables (e.g., cognitive processes, attitudes, emotional arousal, personality traits, worldviews, or psychopathologies). Different schools of psychology direct their researchers to different questions, but they all are interested in inferring psychological variables of authors from the texts they left behind. In the course of analyzing personal documents, psychologically oriented content analysts have developed a variety of inferential techniques (e.g., type/token ratios of key concepts, the discomfort/relief quotient, graphological interpretations, readability yardsticks, thematic apperception tests, and personal structure analysis). In individual psychology, content analysis has become an established method of inquiry since Allport’s (1965) pioneering work.

Example 4. For good reasons, interview and focus group data are frequently subjected to content analysis. Structured interviews generate predefined question-answer pairs, and the researcher then analyzes their distribution. The researcher’s conceptions are imposed on the interviewees, who cannot express the reasons for their choices among predefined answers and whose individual conceptions are ignored. In open-ended interviews and focus groups, in contrast, participants are allowed to speak freely and in their own terms. To explore the conceptions that are manifest in such conversations, researchers need to perform what amounts to content analysis on the transcripts of these conversations. In a breast cancer study, for example, patients were asked about their lives after they had received treatment (Samarel et al., 1998). The answers were naturally freewheeling, as expected, enabling the researchers to adapt their theory of “coping” to the transcripts at hand. The researchers’ reformulated theory then provided the context for a subsequent content analysis. Armed with questions derived from the researchers’ theory, coders looked for and identified answers within the transcripts, and by tabulating these, the researchers provided frequencies and statistical accounts that the funders of the research required. In this study, the qualitative inferences were made during the process of coding, not based on the resulting frequencies, which merely summarized these inferences.
Example 5. Mass communication is the archetypal domain of content analysis. Communication researchers tend to be interested in communicator conceptions, media biases and effects, institutional constraints, implications of new technologies, audience perceptions, public opinion, and how certain values, prejudices, cultural distinctions, and reality constructions are distributed in society—relaying on mass-media messages as their causes or expressions. Typically, mass-media material calls for more reading than any single person can handle. Its analysis thus requires a framework, a theory, a vocabulary, and an analytical focus in terms of which the researcher can construct a suitable context for analysis and collaborate with other researchers on the same project. Different contexts answer different research questions, of course.

A stereotypical aim of mass-media content analysis is to describe how a controversial issue is “depicted” in a chosen genre. Efforts to describe how something is “covered” by, “portrayed” in, or “represented” in the media invoke a picture theory of content. This approach to content analysis decontextualizes the analyzed text and thus reverts to the first kind of definition of content analysis distinguished above. It conceals the researchers’ interest in the analysis, hides their inferences behind the naive belief that they are able to describe meanings objectively while rendering the results immune to invalidating evidence. Consider common findings of political biases, racial prejudices, and the silencing of minorities on television as such issues. Although counts of evident incidences of such phenomena can give the impression of objectivity, they make sense only in the context of accepting certain social norms, such as the value of giving equal voice to both sides of a controversy, neutrality of reporting, or affirmative representations. Implies such norms hide the context that analysts need to specify. Unless analysts spell out whose norms are applied, whose attitudes are being inferred, who is exposed to which mass media, and, most important, where the supposed phenomena could be observed, their findings cannot be validated. Berelson and Lazarsfeld (1948, p. 6) noted long ago that there is no point in counting unless the frequencies lead to inferences about the conditions surrounding what is counted. For example, counting the numbers of mentions of *Microsoft* or *AIDS* or the term *road rage* over time in, say, the *New York Times* would be totally meaningless if the observed frequencies could not be related to something else, such as political, cultural, or economic trends. That something else is the context that lends significance to quantitative findings.

Example 6. Content analysis has many commercial uses. For example, word-association databases (which collect huge numbers of pairs of words that consumers associate in their minds, as determined through word-association experiments) can serve as the context within which advertising researchers can infer chains of associations for new products, services, or brand names. In another, very different application, Michael Eley and I studied how publicity generated by the Public Broadcasting Service about its programming ended up in newspaper articles (Krippendorff & Eley, 1986). The purpose of the study was to enable PBS analysts to infer how the Public Broadcasting Service is perceived by newspapers, the effect included press releases and the (conventions and size of the)

The fo have anal...
by newspaper editors in different regions of the United States and to assess the effectiveness of PBS's publicity efforts. Here the context was very simple. It included what we knew about newspaper editors' access to wire services and press releases, their newspapers' coverage of PBS programming, and certain theories and assumptions about the difference between the two, which led us to infer the (controllable) persuasive force of PBS publicity and the (uncontrollable) attitudes and competencies of the journalists, further differentiated by region and size of the newspaper.

The foregoing suggests that purely descriptive intents, manifest in claims to have analyzed "the content of a newspaper," to have quantified "the media coverage of an event," or to have "found how an ethnic group is depicted," fail to make explicit the very contexts within which researchers choose to analyze their texts. Content analysts have to know the conditions under which they obtain their texts, but, more important, they also have to be explicit about whose readings they are speaking about, which processes or norms they are applying to come to their conclusions, and what the world looks like in which their analyses; their own readings, and their readings of others' readings make sense to other content analysts. Explicitly identifying the contexts for their analytical efforts is also a way of inviting other analysts to bring validating evidence to bear on the inferences published and thus advance content analysis as a research technique. The framework presented in the next section is intended to help content analysts to conceptualize the analytical process so that their results are arguably acceptable.

FRAMEWORK

The definition of content analysis offered at the opening of this chapter and illustrated in the above examples emphasizes the drawing of inferences of a certain kind. It also assigns content analysts a particular role vis-à-vis their objects of inquiry. Following from the above and previous work (Krippendorff, 1969b, pp. 7-13; 1980b), I offer a conceptual framework for content analysis within which that role becomes clear. This framework is intended to serve three purposes: Its *prescriptive* purpose is to guide the conceptualization and design of practical content analytic research; its *analytical* purpose is to facilitate the critical examination and comparison of the published content analyses; and its *methodological* purpose is to point to performance criteria and precautionary standards that researchers can apply in evaluating ongoing content analyses. Thus the use of the framework will lead to long-term systematic improvements of the method.

The framework, which is depicted in Figure 2.1, is simple and general, employing only a few conceptual components:

- A body of text, the data that a content analyst has available to begin an analytical effort
A research question that the analyst seeks to answer by examining the body of text

- A context of the analyst's choice within which to make sense of the body of text
- An analytical construct that operationalizes what the analyst knows about the context
- Inferences that are intended to answer the research question, which constitute the basic accomplishment of the content analysis
- Validating evidence, which is the ultimate justification of the content analysis

Figure 2.1 A Framework for Content Analysis

24.1 Texts

Data are the starting point of any empirical research. Data are taken as givens—that is, the researcher is not in doubt as to what they are. In surveys, focus groups, and psychological experiments, researchers attempt to control the generation of their data, thereby assuring that they know what the data mean, largely, if not exclusively, in the researchers' terms. Most content analyses start with data that are not intended to be analyzed to answer specific research questions. They are texts in the sense that they are meant to be read, interpreted, and understood by people other than the analysts. Readers may decompose what they read into meaningful units, recognize compelling structures, rearticulate their understandings sequentially or holistically, and act on them sensibly. When we are capable of this kind of rearticulation, we attribute textuality to what we see as writing, pictorial images, gestures, Web pages, musical compositions, even behavioral sequences. Text results from reading and rearticulation.
One could speak of symbolic qualities instead of text, but it is preferable not to assume such qualities to exist without reference to who regards them as such. An analyst’s reading—the units, syntax, and narrative structures that constitute the texts for the analyst—naturally differs from the readings that initiate the interpretations of ordinary readers, including the texts’ authors. It follows that an analyst’s reading must never be taken as the only legitimate one, nor should content analysts assume the sole power to determine the form of the texts they analyze. They would then be examining only themselves. We presume that all authors write in the expectation of being understood by self and by others, and it is the implication of others that renders a text socially significant. Although content analysts are not bound to analyze their data with reference to the conceptions or intended audiences of their texts’ authors, they must at least consider that texts may have been intended for someone like them. We know that interviewees answer questions differently when they know how the research findings could affect them, and so we need to read interview results in the context of possible self-interests. We know that when politicians speak, they anticipate being scrutinized by the public, and so we cannot take their speeches at face value, as natural objects. Content analysts have to acknowledge that the textuality they rely on is not the only one that counts.

Content analysts’ best guarantee against the contamination of texts by the stakes their sources have in how their texts are analyzed is to focus on textual features of which their sources are unconscious, or to apply categories the sources of their texts are unable to control. This is most obviously possible when the sources of texts are of the past (historical), when they are unaware of how their texts are being analyzed, or when communication to the analysts is one-way, without feedback. However, given that the results of most content analyses are published, and that the categories that analysts use have the potential of becoming known to the text sources as well, content analysts are justified in applying unconventional categories, that is, in looking at textuality in ways others may not. As Figure 2.1 illustrates, texts occur in the analyst’s world but acknowledge their origins in the worlds of others.

Research Questions

Research questions are the targets of the analyst’s inferences from available texts. Generally, such questions delineate several possible and initially uncertain answers. In this respect, a research question is analogous to a set of hypotheses. However, in contrast to scientific hypotheses, which are pitted against direct observational evidence, the research questions of content analysis must be answered through inferences drawn from texts. The difference between testing scientific hypotheses and selecting an answer to a research question is crucial. Whereas observations are registered or measured for what they are and hypotheses about observational phenomena amount to generalizations from observations,
texts inform an analyst about extratextual phenomena, about meanings, consequences, or particular uses. Thus, whereas scientific hypotheses are accepted on account of a preponderance of evidence in favor of one at the expense of other hypotheses, an ideally large number of observations that support one and rule out others, inferences from texts (although large numbers may play a role here as well) pertain to phenomena that are not observed during a content analysis, phenomena that are outside the texts and thus retain their hypothetical character until confirmed by validating incidences.

There are two reasons for content analysts to start with research questions, ideally in advance of undertaking any inquiries: efficiency and empirical grounding. One can surely explore the meanings that come to mind while reading a text, following the threads of the inferences to wherever they may lead, or engaging in so-called fishing expeditions. Hermeneutical, interpretive, and ethnographic approaches to reading cherish such open-endedness. However, when research is motivated by specific questions, analysts can proceed more expeditiously from sampling relevant texts to answering given questions. Content analysts who start with a research question read texts for a purpose, not for what an author may lead them to think or what they say in the abstract.

The pursuit of answers to research questions also grounds content analysis empirically. All answers to research questions entail truth claims that could be supported, if not by direct observation then at least by plausible argumentation from related observations. Our framework suggests that content analysis compensates for analysts’ inability to observe phenomena in which they are interested, whether those phenomena pertain to the characteristics of writers or readers, to happenings hidden behind intentional information barriers, or to events in a distant past or future.

Formulating research questions so that the answers could be validated in principle protects content analysts from getting lost in mere abstractions or self-serving categorizations. For example, the question of how frequently a particular word occurs in a text can be answered by counting. Counting is what analysts do. Counts cannot be validated by independent evidence; to assure that counts are correct, analysts must repeat them, perhaps employing different persons as counters. The same is true for questions concerning whether one can categorize, measure, or analyze something. Their answer lies in a researcher’s ability to execute these processes reliably. These questions cannot be answered by research. Questions concerning the statistical generalizability of textual attributes or “contents” (in the sense of the first kind of definition of content analysis discussed above) from a sample to a population from which this sample was drawn are not suitable content analysis research questions either, but for a different reason. Although their answers do rely on empirical evidence, without abductive inferences to phenomena outside the texts being analyzed, generalizations are inductive and cannot answer content analysis research questions. Thus, in content analysis, research questions have the following characteristics:

- They are believed to be answerable (abductively inferable) by examinations of a body of texts. (In Figure 2.1, this is indicated by the bold dashed arrows.)
They delineate a set of possible (hypothetical) answers among which analysts select. (In Figure 2.1, an answer is indicated by the unlabeled diamond.)

They concern currently inaccessible phenomena.

They allow for (in)validation—at least in principle—by acknowledging another way to observe or substantiate the occurrence of the inferred phenomena. (In Figure 2.1, this is indicated by the thin dashed arrow from the worlds of others to the answer to the research question.)

Context 2.4.3

I have argued above that texts acquire significance (meanings, contents, symbolic qualities, and interpretations) in the contexts of their use. Although data enter a content analysis from outside, they become texts to the analyst within the context that the analyst has chosen to read them—that is, from within the analysis. A context is always someone's construction, the conceptual environment of a text, the situation in which it plays a role. In a content analysis, the context explains what the analyst does with the texts; it could be considered the analyst's best hypothesis for how the texts came to be, what they mean, what they can tell or do. In the course of a content analysis, the context embraces all the knowledge that the analyst applies to given texts, whether in the form of scientific theories, plausibly argued propositions, empirical evidence, grounded intuitions, or knowledge of reading habits.

The context specifies the world in which texts can be related to the analyst's research questions. This world is always one of many. Political analysts construct worlds that differ from those of politicians, often embracing additional perspectives, but those worlds also differ from the worlds of psychologists, journalists, historians, psychotherapists, scholars of literature, and—naturally—communication researchers, who pursue their own research agenda and approach texts with their own questions, concepts, models, and analytical tools. Scholars in different disciplines tend to place the same texts in different contexts but rarely without acknowledging that there are other readings, other contexts, other worlds, within which given texts function as well—authors, audiences, users, and beneficiaries, for example. In Figure 2.1, these worlds are shown in the ovals embracing texts and their multiple meanings.

Knowledge of the context for content analyzing given texts can be separated into two kinds:

- The network of stable correlations, which are believed to connect available texts to the possible answers to given research questions, whether these correlations are established empirically, derived from applicable theory, or merely assumed for the purpose of an analysis.
Contributing conditions, which consist of all the factors that are known to affect that network of stable correlations in foreseeable ways.

In Figure 2.1, these relationships are shown by a bold line and a bold arrow.

To use an example that is far from simple: In an ordinary conversation, what is observed and heard as being said at any one moment (the data) is understandable only in the context of what has been said before, by whom and to whom, the responses elicited from the participants, and how it directed the conversation. This is an observer's account of a conversation, from outside of it. To participants, their version of what is going on (the contexts that include the other participants) is not necessarily shared. In fact, there would be no point in conversing if all participants saw their worlds, thought, and spoke alike. A conversation analyst contextualizes the transcript of a conversation (the text) in yet another way, by constructing a world (the analyst's context) within which the participants appear to "speak" in the analytical terms that the conversation analyst is familiar with and brings to the analyzed transcript. Whether a conversation analyst wants to infer the intentions of the participants to initiate certain moves (turn taking, for example) or how addressees will respond to a string of "he said--she said" (the evolution of a topic), the analyst draws on knowledge of the empirical relationship between these speech acts (the correlations that connect one to another) and the strengths (perlocutionary forces) of particular utterances, the network of connections that leads, hopefully, from texts to answers to the research question.

A conversation is not a mechanical system. Participants alter the rules of their engagement as it unfolds. This leaves outside observers uncertain as to what the participants mean, how they understand what is going on, and which rules govern the conversation at any one moment. Because conversation analysts tend not to participate in the conversations they analyze, and therefore have no way of asking the interlocutors how they see their situation, the analysts have to acknowledge other determining variables (the contributing conditions) and find ways to ascertain how they affect the correlations relied upon to lead to the intended inferences.

Inasmuch as a context stands in place of what is momentarily inaccessible to direct observation, there is no limit to the number of contexts that may be applicable in a given analysis. Unless told, readers of the conclusions of a content analysis may not know the context that the analyst was using and may come to seriously misleading interpretations. In view of this possibility, content analysts need to make their chosen contexts explicit, so that the results of their analyses will be clear to their scientific peers and to the beneficiaries of the research results. Without explicitation of the context, the steps that a content analyst takes may not be comprehensible to careful readers, and the results to which they lead may not be datable by other means.

Analytical Constructs

Analytical constructs operationalize what the content analyst knows about the context, specifically the network of correlations that are assumed to explain how...
The text on the page is not legible due to the image quality. However, it appears to discuss the relationship between text analysis and computational procedures, possibly focusing on content analysis and its implications for understanding language and communication. The text mentions the use of analytical constructs to model content analysis, and the conditions under which these constructs can be applied. It also touches on the role of context in linguistic analysis and the importance of understanding the context in which texts are produced and analyzed.

Page 35

CONCEPTUAL FOUNDATION
contexts they have chosen. The purpose of all analytical constructs is to ensure that texts are processed in reference to what is known about their use.

2.4.5 Inferences

The inferential nature of content analysis should by now be obvious. Content analytic inferences may be hidden in the human process of coding. They may be built into analytical procedures, such as the dictionaries in computer-aided text analyses or well-established indices. Sometimes, especially after complex statistical procedures have been applied, inferences appear in the analyst's interpretations of the statistical findings. Figure 2.1 depicts the path that an inference takes with bold and broken lines, with the inference motivated or explained by an analytical construct that enters the analysis as a representation of the chosen context.

Because the word *inference* has several meanings, it is important to distinguish the meaning that is relevant to this discussion from others that are perhaps more familiar to readers. In logic, at least three types of inferences are distinguished:

- Deductive inferences are implied in their premises. For example, if all humans speak a language, then John, being human, must speak one as well. Deductive inferences are logically conclusive. They proceed from generalizations to particulars.

- Inductive inferences are generalizations to similar kinds. For example, I might infer from the fact that all of my neighbors speak English that all humans do. This inference is not logically conclusive, but it has a certain probability of being correct. Statistical generalizations from smaller samples to larger populations (typical of social research) and the idea of measuring the statistical significance of scientific hypotheses involve inferences of this kind. They proceed from particulars to generalizations.

- Abductive inferences proceed across logically distinct domains, from particulars of one kind to particulars of another kind. (These are the kinds of inferences of interest to content analysis, where they proceed from texts to the answers to the analyst's questions.) Consider linguistic competence and age. Logically, neither implies the other. However, if one has practical experience with infants' language acquisition, one might be able to infer children's ages from the sounds they make or from the vocabulary they use. Of course, one can make such inferences only with a certain probability, but the probability may be strengthened if one is able to take other variables (contributing conditions) into account.

Deductive and inductive inferences are not central to content analysis. The following examples of inferences employed in content analysis are all abductive in nature:

- One
- One meta
- One comp
- One beha
- One letter
- One from
- One of dil
- One prose
- One the d
- One choo
- One the e
- One affair

According to

The logical
conjecture to try coding
in text.

Result

For Joseph (facts, constructs in the data true and questions)
One might date a document from the vocabulary used within it.

One might infer the religious affiliations of political leaders from the metaphors used in their speeches.

One might infer the readability of an essay from a measure of the complexity of its composition.

One might infer whether someone is lying from his or her nonverbal (facial) behavior.

One might infer the problems of a city from the concerns expressed in letters written to the city’s mayor’s office.

One might infer the prevailing conceptualizations of writers and readers from the proximities of words in frequently used texts.

One might infer editorial biases from a comparison of the editorial pages of different newspapers.

One might infer a writer’s psychopathology from the images used in her prose.

One might infer the identity of the author of an unsigned document from the document’s statistical similarities to texts whose authors are known.

One might infer the political affiliations of citizens from the TV shows they choose to watch.

One might infer an individual’s propensity to engage in a hate crime from the ethnic categories he uses in ordinary speech.

One might infer the likelihood of war from the coverage of international affairs in the elite newspapers of neighboring countries.

According to Eco (1994):

The logic of interpretation is the Peircean logic of abduction. To explain a conjecture means to figure out a law that can explain a Result. The “secret code” of a text is such a Law. . . in the natural sciences the conjecture has to try only the law, since the Result is under the eyes of everybody, while in textual interpretation only the discovery of a “good” Law makes the Result acceptable. (p. 59)

For Josephson and Josephson (1994, p. 5), abduction starts with a body of data (facts, observations, givens)—our text. A hypothesis—our analytical construct—if true, would explain these data. No other hypothesis can explain the data as well as the chosen one does. Therefore, the hypothesis is probably true and can be used to deduce other entailments—that is, answer our research questions.
Abductive inference is Sherlock Holmes’s logic of reasoning as well (Bonfantini & Proni, 1988; Truzzi, 1988). Holmes’s creator, Sir Arthur Conan Doyle, always lets him find empirical connections and apply bits of common knowledge in the context of established facts that he is then able to weave ingeniously into an inferential network containing the initially unrecognizable chain of logical steps from known facts to the perpetrator of an unobserved crime. Content analysts are in a similar position of having to draw inferences about phenomena that are not directly observable, and they are often equally resourceful in using a mixture of statistical knowledge, theory, experience, and intuition to answer their research questions from available texts.

In this respect, the whole enterprise of content analysis may well be regarded as an argument in support of an analyst’s abductive claims. In Toulmin’s (1958) theory of argumentation, which applies not just to abductions, the move from data (D) to conclusions or claims (C) must be justified by a suitable warrant (W). In his example, learning that “X is a Swede,” the inference that “X most likely is a Protestant” is warranted by the knowledge that “most Swedes are Protestants.” Because this inference is not without exceptions, it includes a qualification (Q) of the conclusion (C) (i.e., “most likely”). The warrant provides the logical bridge between the data and the conclusion. Toulmin also introduces another element: the ground on which the warrant may be justified, or the backing (B). In Figure 2.1 we may recognize the diagram that Toulmin (p. 104) uses to show the relationships among the above-mentioned parts of arguments:

```
D       Therefore Q, C
       Since W
       Backed by B
```

In moving from texts to the answer to a research question, as illustrated in Figure 2.1, it is the assumptive analytical construct plus the assurance that the analysis has been performed reliably that warrants that inference, which in turn is backed by the analyst’s knowledge of the context in which the texts occur or are interpreted:

```
Texts       Probable Answer to Research Question
A             Reliably Applied
       procedurally representing
       the stable correlations and contributing conditions
       within the Context of the texts
```

Any con d’être of cor evi dence— impossible inferences of decease to an individ analysis research qu backing evidence of some independent
Ex post fectibility. It can in texts and analytical over weighted a Much too ch them without literature on
A good p mentioned in C whether the ganda analytical techniques indirect means analyses should behaviors (Gerbner and television with their work, Beaek, 1977)
As noted, inadmissible in a group of v office, the
Any content analysis should be validatable in principle. Because the raison d'être of content analysis is the absence of direct observational evidence, validation may be difficult or infeasible, if not impossible, in practice. It is infeasible when a content analysis is to be acted upon in the absence of direct observational evidence—for example, in wartime analysis of planned military activities from domestic propaganda or in assessments of whether a politician is lying. It is impossible when research questions concern past or future happenings, such as inferences from surviving documents to historical facts, inferences from the works of deceased authors to their intentions, or inferences from psychological tests to an individual's aptitude for a particular job. The point of requiring that content analyses be "validatable in principle" is to prevent analysts from pursuing research questions that allow no empirical validation or that yield results with no backing except by the authority of the researcher. For example, a conclusion from an analysis of television fiction that hedonism is on the rise in the United States means nothing unless those who claim such findings can show that this conclusion is not merely their abstraction from fictional programming, but also has some independently observable reality—that is, unless they can show that a rise in hedonism is manifest in something other than television fiction.

Ex post facto validation of content analysis is not merely a matter of curiosity. It can increase confidence in the results of future content analyses of similar texts and in similar contexts, but only if the categories of analysis and the analytical constructs are used repeatedly, so that successes and failures can be weighted against each other and used to advance the technique in the long run. Much too often, researchers design content analysis studies ad hoc and conduct them without any thought of validation; such research contributes little to the literature on content analysis.

A good example of ex post facto validation is George's (1959a) effort (mentioned in Chapter 1) to examine documents captured after World War II to see whether they matched what the Federal Communications Commission propaganda analysts had inferred during the war and to evaluate the FCC researchers' techniques for use by future analysts. In 1943, Janis (1943/1965) proposed an indirect method of validation, suggesting that the results of mass-media content analyses should at least correlate with audience verbal reports or observed behaviors (e.g., public opinion polls, voting, consumption, or aggression). Thus Gerbner and his colleagues sought to correlate the amount of violence seen on television with survey data on audience members' perceptions of how violent their world "really" is (see, e.g., Gerbner, Gross, Signorielli, Morgan, & Jackson-Beck, 1979; Gerbner, Gross, Morgan, & Signorielli, 1994).

As noted above, our framework demands merely that a content analysis be validatable in principle. For example, if a content analyst infers what a particular group of voters learned from TV campaign ads about a candidate for political office, then, potentially, a survey of those exposed to the ads could validate or
invalidates this inference. However, if a content analyst insists that such TV campaign ads have certain contents, there is no way for others to validate this “finding.” Repeating this particular content analysis would merely indicate the degree to which the original analysis was reliable. Similarly, finding that a certain word occurs with a certain frequency does not constitute an abductive inference. Recounting cannot validate what a frequency is inferred to mean.

2.5 CONTRASTS AND COMPARISONS

Every research technique has its powers and its limitations, and content analysis is no exception. A researcher can misapply a technique or use a technique that is ill suited for a particular purpose, in ignorance of better ones. In this section, I contrast content analysis with other techniques used in social research, paying special attention to the four distinguishing features of content analysis.

Content analysis is an unobtrusive technique. As Heisenberg’s uncertainty principle tells us, acts of measurement interfere with the phenomena being assessed and create contaminated observations; the deeper the observer probes, the greater the severity of the contamination. For the social sciences, Webb, Campbell, Schwartz, and Sechrest (1966) have enumerated several ways in which subjects react to being involved in scientific inquiries and how these can introduce errors into the data that are analyzed:

- Through the subjects’ awareness of being observed or tested
- Through the artificiality of the task or the subjects’ lack of experience with the task
- Through the expectations that subjects bring to the role of interviewee or respondent
- Through the influence of the measurement process on the subjects
- Through stereotypes held by subjects and the subjects’ preferences for casting certain responses
- Through experimenter/interviewer interaction effects on the subjects

Controlled experiments, interviews, focus groups, surveys, and projective tests are especially vulnerable to such errors. By contrast, content analyses, computer simulations, research using already available statistics, and interpretive research (in cultural studies, for example) are nonreactive or unobtrusive. Researchers using ethnographic methods subscribe to the unobtrusive ideal as well, but while conducting fieldwork even the most careful ethnographers cannot escape influencing their informers.

Social researchers may want to avoid reactive situations for two primary reasons. The first is that undue influence on the situation that gives rise to the

data may alter the result. For this reason, ethnographers often avoid involving their informers in the research process. Informants may also be concerned that the data for which they are responsible may be used inappropriately. For example, American anthropologists have long been aware that if a researcher were to achieve high status among a certain group and then attempt to collect data on students’ scores, the students might try to improve their grades to impress the ethnographer.

Content analysis is often distinguished from questionnaire surveys and artificial data-making techniques (e.g., asking subjects to write about their feelings, counting errors, identifying the number of times subjects mention certain topics) and from fieldwork, which involves the collection of unstructured data from informants. Content analysis is distinguished from the data’s sources.

Content analysis is often distinguished from questionnaire surveys and artificial data-making techniques (e.g., asking subjects to write about their feelings, counting errors, identifying the number of times subjects mention certain topics) and from fieldwork, which involves the collection of unstructured data from informants. Content analysis is distinguished from the data’s sources.
data may distort the data, jeopardizing the validity of the research. For this reason, ethnomethodologists prefer to obtain data in natural settings, psychiatrists avoid asking their patients questions that might induce false memories, and economists investigate mathematical models rather than experiment with the real economy. The second reason is that researchers need to conceal their interest in the data for fear of being manipulated by their sources. Instrumental assertions are difficult to analyze (Mahl, 1959). Had Goebbels, the Nazi-era minister of propaganda in Germany, known how, by what methods, and for what purposes American analysts were examining his broadcasts during World War II, he would have found ways to deceive the analysts. Individuals can be taught how to achieve high scores on aptitude tests, and those who believe that success in their chosen career paths depends on their scoring well on these tests eagerly seek appropriate education. The extent to which preparatory instruction improves students' scores on a given test is also the extent of that test's invalidity. As an unobtrusive technique, content analysis can avoid such biases altogether.

Content analysis can handle unstructured matter as data. For efficiency's sake, researchers gain a considerable advantage if they can impose a structure on the data-making process so that the results are readily analyzable. Surveys, mail questionnaires, and structured interviews typically offer respondents predefined choices that are easily tabulated, coded, or processed by computer. But they thereby also prevent the respondents' individual voices from being heard. Subjects in laboratory experiments are often taught what amounts to a highly artificial data language: pushing buttons, scaling their opinions numerically, identifying shapes or forms they may never have seen before, or administering electric shocks to fellow subjects in place of less clearly measurable expressions of violence. These techniques are successful because they allow researchers to suppress unwieldy variations, which are due largely to the fact that ordinary human subjects see, talk, and behave in many different ways.

Typically, content analysts become interested in data only after the data have been generated. They have to cope with texts in a diversity of formats associated with different purposes, do not always find what they are looking for, and cannot fully anticipate the terms and categories used by the sources of their texts. This puts content analysts in an analytical position that is less than advantageous, a condition they share with ethnomethodologists, anthropologists doing fieldwork, historiographical researchers, and researchers using hermeneutical or interpretive approaches (such as those used in studies of politics, psychotherapy, feminist scholarship, and social constructionism). The chief advantage of the unstructuredness of content analysis data is that it preserves the conceptions of the data's sources, which structured methods largely ignore.

Content analysis is context sensitive and therefore allows the researcher to process as data texts that are significant, meaningful, informative, and even representational to others. Context-insensitive methods, such as controlled laboratory experiments, surveys, structured interviews, and statistical analyses,
generate data without reference to their original contexts, thus disembodying observations, unitizing complex and contiguous events, and taking single words out of their contexts of use and representing them as data points in the analysts’ theoretical spaces. In such methods, it no longer matters what gave rise to the data, how various elements in the data relate to each other, how others understand the data, or what the data mean to their sources. Context-sensitive methods, in contrast, acknowledge the textuality of the data—that is, they recognize that the data are read by and make sense to others, and they proceed by reference to contexts of their own. Inferences drawn through the use of such methods have a better chance of being relevant to the users of the analyzed texts.

Content analysts may not always be as qualitative as are political analysts, who live in the very process they analyze. Nor are they quite as free as cultural studies researchers and conversation analysts, who contextualize their texts in a vocabulary that may appear alien to the people they speak for or of. Finally, content analysts may not be quite as limited in scope as the users of projective tests, who confine themselves to inferences concerning individuals’ psychological characteristics (much as in content analyses of the second kind of definition discussed above).

Content analysis can cope with large volumes of data. Much of ethnomethodology as well as case study approaches, historiographical methods, and interpretive research rely on small samples of text; the volume of data is limited largely by what a researcher can read reliably and without losing track of relevant details. Although content analysis can be used to analyze small samples of texts (in fact, this is quite common, especially in the academic world, where funds are few and stakes are not as high as in politics, commerce, or medicine), such uses do not realize the technique’s full potential. The ability to process large volumes of text in content analysis is paid for by the explicitness of the method’s procedures, which, if clearly stated, can be applied repeatedly, by many coders or by computer software. As noted above, Berelson and Lazarsfeld (1948) stated long ago that content analysts must be systematic in their reading of texts and suggested that category schemes be devised that could be applied to every unit of text equally and without exception. Explicit vocabularies enable content analysts to employ many coders and pool their readings, which allows them to process quantities of text that far exceed what single individuals can analyze reliably. Consider the following numbers of units of analysis processed in early content analyses, largely without the aid of computers:

- 481 personal conversations (Landis & Burtt, 1924)
- 427 school textbooks (Pierce, 1930)
- 4,022 advertising slogans (Shuman, 1937; cited in Berelson, 1952)
- 8,039 newspaper editorials (Foster, 1938)
- 800 news of foreign language radio programs (Arnheim & Bayne, 1941)
19,553 editorials (Pool, 1952a)

15,000 characters in 1,000 hours of television fiction (Gerbner et al., 1979)

Of course, these numbers, which were considered impressive in 1980, when the first edition of *Content Analysis* was published, are now dwarfed by the size of the electronic full-text databases that have emerged since. At the time of this writing, ERIC, a clearinghouse for educational and social science writing, has more than 750,000 articles in its database. In Britain, FT Profile holds a large array of different file types, including newspapers, news wire stories, magazines and journals, company and industry reports, lists of references, and research publications (Hansen, 1995). In the United States, LexisNexis provides online access to the full texts of all major legal publications, newspapers, scientific journals, and corporate materials—about 50,000 publications, some accumulating since the late 1980s and early 1990s, each containing numerous articles or news items. Dialog is an even more eclectic online source of texts. The exponentially growing Internet is an unimaginably large but for the most part unmined source of content analysis data. The availability of electronic texts is fast expanding to other kinds of materials, such as survey questions and responses, scientific findings, film scripts, transcripts of television news programs, image archives, sound recordings, and graphical representations in Web pages, making content analysis an increasingly important research technique. These explosive developments have had the effect of bringing content analysis closer to large population surveys, but without such surveys' undesirable qualities (i.e., without being obtrusive, meaning obliterating, and context insensitive). They are also shifting the bottleneck of content analysis from the costs of access and tedious human coding to needs for good theory, sound methodology, and software that is capable of coping with such volumes. Here, pioneering work is progressing.
CHAPTER 4

The Logic of Content Analysis Designs

As a technique, content analysis relies on several specialized procedures for handling texts. These can be thought of as tools for designing suitable analyses. This chapter outlines the key components of content analysis and distinguishes among several research designs, especially designs used in the preparation of content analyses and designs for content analyses that contribute to larger research efforts.

CONTENT ANALYSIS DESIGNS

The very idea of research—a repeated search within data for apparent patterns—presupposes explicitness about methodology. Unless researchers explain clearly what they have done, how can they expect to be able to replicate their analyses or to process more texts than an individual can read? Beyond that, how can they convince others that their research was sound and thus their results should be accepted?

A datum is a unit of information that is recorded in a durable medium, distinguishable from and comparable with other data, analyzable through the use of clearly delineated techniques, and relevant to a particular problem. Data are commonly thought of as representing observations or readings, but they are always the products of chosen procedures and are always geared toward particular ends—in content analysis, data result from the procedures the researcher has chosen to answer specific questions concerning phenomena in the context of given texts. Hence data are made, not found, and researchers are obligated to say how they made their data.

The network of steps a researcher takes to conduct a research project is called the research design, and what knits the procedural steps into the fabric
of a coherent research design is the design's logic. Generally, this logic concerns two qualities: the efficiency of the procedural steps (avoiding structural redundancies while preventing "noise" from entering an analysis) and the evenhandedness of data processing (preventing the favoring of one outcome over another). This logic enables analysts to account to their scientific community for how the research was conducted. For a research design to be replicable, not merely understandable, the researcher's descriptive account of the analysis must be complete enough to serve as a set of instructions to coders, fellow researchers, and critics—much as a computer program determines what a machine is to do. Although the thoroughness of a computer program may serve as a scientific ideal, in social research the best one can hope for is an approximation of that ideal. Content analysts in particular must cope with a good deal of implicitness in their instructions. (I will return to this topic in subsequent chapters.)

Traditional guides to research methods tend to insist that all scientific research tests hypotheses concerning whether or not patterns are evident in the data. Content analysis, however, has to address prior questions concerning why available texts came into being, what they mean and to whom, how they mediate between antecedent and consequent conditions, and, ultimately, whether they enable the analysts to select valid answers to questions concerning their contexts. Hence the logic of content analysis designs is justifiable not only according to accepted standards of scientific data processing (efficiency and evenhandedness), but also by reference to the context in relation to which texts must be analyzed.

Figure 2.1 represents an attempt to conceptualize the situation that the content analyst has to observe. It may be seen to contain Figure 4.1, which represents the simplest content analysis design. Here, the analyst relies solely on available texts to answer a research question. Although this figure locates texts and

![Figure 4.1 Content Analysis: Answering Questions Concerning a Context of Texts](image-url)
results—inputs and outputs of the analysis—in a chosen context, it suggests nothing about the nature of the context that justifies the analysis (discussed in Chapter 3) or about the network of needed analytical steps, which I address below.

Components

Here we open the “content analysis” box in Figure 4.1 and examine the components the analyst needs to proceed from texts to results. Listing these components is merely a convenient way to partition, conceptualize, talk about, and evaluate content analysis designs step by step. As accounts of what the components do must also serve as instructions for replicating them elsewhere, each component has a descriptive and an operational state:

- **Unitizing**: relying on unitizing schemes
- **Sampling**: relying on sampling plans
- **Recording/coding**: relying on coding instructions
- **Reducing** data to manageable representations: relying on established statistical techniques or other methods for summarizing or simplifying data
- **Abductively inferring** contextual phenomena: relying on analytical constructs or models of the chosen context as warrants
- **Narrating** the answer to the research question: relying on narrative traditions or discursive conventions established within the discipline of the content analyst

Together, the first four components constitute what may be summarily called **data making**—creating computable data from raw or unedited texts. In the natural sciences, these four are embodied in physical measuring instruments. In the social sciences, the use of mechanical devices is less common—often impossible—and data making tends to start with observations. The fifth component, abductively inferring contextual phenomena, is unique to content analysis and goes beyond the representational attributes of data. I describe each of the components in turn below.

Unitizing is the systematic distinguishing of segments of text—images, voices, and other observables—that are of interest to an analysis. In Chapter 5, I discuss different units of analysis—sampling units, recording units, context units, units of measurement, units of enumeration—and the different analytical purposes they serve. Given these differences, unitizing may occur at various places in a content analysis design. Content analysts must justify their methods of unitizing, and to do so, they must show that the information they need for their analyses is represented in the collection of units, not in the relationships between the units, which unitizing discards.
Sampling allows the analyst to economize on research efforts by limiting observations to a manageable subset of units that is statistically or conceptually representative of the set of all possible units, the population or universe of interest. Ideally, an analysis of a whole population and an analysis of a representative sample of that population should come to the same conclusion. This is possible only if the population manifests redundant properties that do not need to be repeated in the sample drawn for analysis. But samples of text do not relate to the issues that interest content analysts in the same way that samples of individuals relate to populations of individuals of interest in surveys of public opinion, for example. Texts can be read on several levels—at the level of words, sentences, paragraphs, chapters, or whole publications; as literary works or discourses; or as concepts, frames, issues, plots, genres—and may have to be sampled accordingly. Hence creating representative samples for content analyses is far more complex than creating samples for, say, psychological experiments or consumer research, in which the focus tends to be on one level of units, typically individual respondents with certain attributes (I discuss the issues involved in sampling for content analysis in depth in Chapter 6). In qualitative research, samples may not be drawn according to statistical guidelines, but the quotes and examples that qualitative researchers present to their readers have the same function as the use of samples. Quoting typical examples in support of a general point implies the claim that they represent similar if not absent cases.

Recording/coding bridges the gap between unitized texts and someone's reading of them, between distinct images and what people see in them, or between separate observations and their situational interpretations. One reason for this analytical component is researchers' need to create durable records of otherwise transient phenomena, such as spoken words or passing images. Once such phenomena are recorded, analysts can compare them across time, apply different methods to them, and replicate the analyses of other different researchers. Written text is always already recorded in this sense, and, as such, it is readable. It has a material base—much like an audiotape, which can be replayed repeatedly—without being in an analyzable form, however. The second reason for recording/coding is, therefore, content analysts' need to transform unedited texts, original images, and/or unstructured sounds into analyzable representations. The recording of text is mostly accomplished through human intelligence. I discuss the processes involved in recording and coding in Chapter 7, and then, in Chapter 8, I discuss the data languages used to represent the outcomes of these processes. In content analysis, the scientific preference for mechanical measurements over human intelligence is evident in the increasing use of computer-aided text analysis (discussed in Chapter 12); the key hurdle of such text analysis, not surprisingly, is the difficulty of programming computers to respond to the meanings of texts.

Reducing data serves analysts' need for efficient representations, especially of large volumes of data. A type/token statistic (a list of types and the frequencies of tokens associated with each), for example, is a more efficient representation than a tabulation of all occurrences. It merely replaces duplications by a frequency. Because one representation can be created from the other, nothing is lost. However, in many coefficient of correlation, the analyst can also benefit from the elimination of redundant data, which reduces the time and effort required for analysis.

Abduct outside the text, writing the information in which the research problem is embedded. This includes the selection of theories and their development, the design of research before the analysis begins, and the interpretation of results. The analysis itself is often seen as a process of testing hypotheses, but in many cases, it is more about discovering new insights or refining existing theories. The methods of content analysis are often iterative and may involve multiple rounds of coding and re-purposing of data.
in many statistical techniques for aggregating units of analysis—correlation coefficients, parameters of distributions, indices, and tested hypotheses—information is lost. In qualitative pursuits, rearticulations and summaries have similar effects: They reduce the diversity of text to what matters.

Abductively inferring contextual phenomena from texts moves an analysis outside the data. It bridges the gap between descriptive accounts of texts and what they mean, refer to, entail, provoke, or cause. It points to unobserved phenomena in the context of interest to an analyst. As I have noted in Chapter 2, abductive inferences—unlike deductive or inductive ones—require warrants, which in turn may be backed by evidence. In content analysis, such warrants are provided by analytical constructs (discussed in Chapter 9) that are backed by everything known about the context. Abductive inferences distinguish content analysis from other modes of inquiry.

Narrating the answers to content analysts’ questions amounts to the researchers’ making their results comprehensible to others. Sometimes, this means explaining the practical significance of the findings or the contributions they make to the available literature. At other times, it means arguing the appropriateness of the use of content analysis rather than direct observational techniques. It could also entail making recommendations for actions—legal, practical, or for further research. Narrating the results of a content analysis is a process informed by traditions that analysts believe they share with their audiences or the beneficiaries of their research (clients, for example). Naturally, most of these traditions are implicit in how social scientists conduct themselves. Academic journals may publish formal guidelines for researchers to follow in narrating their results and let peer reviewers decide whether a given content analysis is sound, interesting, and worthwhile.

The six components of content analysis do not need to be organized as linearly as suggested by Figure 4.2. A content analysis design may include iterative loops—the repetition of particular processes until a certain quality is achieved. Or components may recur in various guises. For example, unitizing may precede the sampling of whole documents, but it may also be needed to describe the details of their contents. Thus coding instructions may well include unitizing schemes. Moreover, a content analysis could use components that are not specifically highlighted in Figure 4.2. Decisions, to mention just one analytical action, typically direct the content analysts along an inferential path with many forks and turns toward one or another answer to the research question. Here, decisions are part of the inference component. Finally, it is important to note that there is no single “objective” way of flowcharting research designs.

The analyst’s written instructions (represented in boldface type in Figure 4.2), which specify the components in as much detail as feasible, include all the information the analyst can communicate to other analysts so that they can replicate the design or evaluate it critically. The traditions of the analyst’s discipline (in medium type in Figure 4.2) are the exception to the demand for explicitness. Most scientific research takes such traditions for granted.

Any set of instructions, it must be noted, imposes a structure on the available texts. Ideally, this structure feels natural, but it may feel inappropriate or forced,
Figure 4.2 Components of Content Analysis

if not alien, relative to the analyst's familiarity with the texts' context. Take unifying, for example. Texts may be cut into any kind of units, from single alphabetical characters to whole publications. Unifying is arbitrary, but not for a particular content analysis. For example, if an analyst wants to infer public opinion from newspaper accounts, stories may be more natural for an examination of what readers think and talk about than, say, value-laden words that occur in these accounts. The use of inappropriate units leads analysts to experience conceptual trouble. Or an analyst may apply a particular sampling plan and then discover, perhaps too late, not only that the sampled documents are unevenly relevant but that the sampling plan has excluded the most significant ones. Finally, in reading given texts, an analyst may encounter important concepts for which the coding instructions fail to provide suitable categories; such a discovery would render the recording/coding task arbitrary or uncertain. During the development phase of content analysis design, a sensible analyst "resists the violence" that poor instructions can inflict on the texts and attempts to reformulate instructions as needed so that they are appropriate to the texts at hand. This sensible approach is illustrated in Figure 4.2 by the dashed lines, which show another flow of information that is motivated by the analyst’s resistance to inappropriate analytical steps. The instructions in good content analysis designs always take such information into account.

A final point regarding Figure 4.2: As noted in Chapter 2, texts are always the observable parts of a chosen context. The context directs the analysis of a text, and the results of the analysis contribute to a (re)conceptualization of the context, redirecting the analysis, and so forth. This reveals the essentially recursive nature of the process of designing content analyses. This recursion contrasts sharply with the application of a content analysis design, which is essentially a one-way transformation of available texts into the answers to the analyst’s
research questions. We must therefore distinguish between the development of a content analysis, during which a design emerges that possesses context-sensitive specificity, and the execution of a content analysis, during which the design is relatively fixed and ideally replicable, regardless of what the texts could teach the analyst. Interestingly, the context-sensitive path that the content analyst takes while developing the design is no longer recognizable when the finished design is applied to large volumes of text and/or replicated elsewhere.

Quantitative and Qualitative Content Analysis

In Chapter 2, I noted that quantification is not a defining criterion for content analysis. Text is always qualitative to begin with, categorizing textual units is considered the most elementary form of measurement (Stevens, 1946), and a content analysis may well result in verbal answers to a research question. Using numbers instead of verbal categories or counting instead of listing quotes is merely convenient; it is not a requirement for obtaining valid answers to a research question. In Chapter 1, I suggested that the quantitative/qualitative distinction is a mistaken dichotomy between the two kinds of justifications of content analysis designs: the explicitness and objectivity of scientific data processing on the one side and the appropriateness of the procedures used relative to a chosen context on the other. For the analysis of texts, both are indispensable. Proponents of quantification—Lasswell (1949/1965b), for example—have been rightly criticized for restricting content analysis to numerical counting exercises (George, 1959b) and for uncritically buying into the measurement theories of the natural sciences. Proponents of qualitative approaches, who have come largely from the traditions of political analysis, literary scholarship, ethnography, and cultural studies (Bernard & Ryan, 1998), have been criticized for being unsystematic in their uses of texts and impressionistic in their interpretations. Although qualitative researchers compellingly argue that each body of text is unique, affords multiple interpretations, and needs to be treated accordingly, there is no doubt that the proponents of both approaches sample text, in the sense of selecting what is relevant; unitize text, in the sense of distinguishing words or propositions and using quotes or examples; contextualize what they are reading in light of what they know about the circumstances surrounding the texts; and have specific research questions in mind. Thus the components of content analysis in Figure 4.2 are undoubtably present in qualitative research as well, albeit less explicitly so. I think it is fair to say that:

- Avowedly qualitative scholars tend to find themselves in a hermeneutic circle, using known literature to contextualize their readings of given texts, rearticulating the meanings of those texts in view of the assumed contexts, and allowing research questions and answers to arise together in the course of their involvement with the given texts. The process of recontextualizing,
reinterpreting, and redefining the research question continues until some kind of satisfactory interpretation is reached (see Figure 4.3). Scholars in this interpretive research tradition acknowledge the open-ended and always tentative nature of text interpretation. Taking a less extreme position, content analysts are more inclined to limit such hermeneutic explorations to the development phase of research design.

- Qualitative scholars resist being forced into a particular sequence of analytical steps, such as those illustrated in Figure 4.2. Acknowledging the holistic qualities of texts, these scholars feel justified in going back and revising earlier interpretations in light of later readings; they settle for nothing less than interpretations that do justice to a whole body of texts. As such readings cannot easily be standardized, this process severely limits the volume of texts that a single researcher can analyze consistently and according to uniform standards. Because this process is difficult to describe and to communicate, qualitative studies tend to be carried out by analysts working alone, and replicability is generally of little concern. By contrast, faced with larger volumes of text and working in research teams, content analysts have to divide a body of texts into convenient units, distribute analytical tasks among team members, and work to ensure the consistent application of analytical procedures and standards. For these reasons, content analysts have to be more explicit about the steps they follow than qualitative scholars need to be.

- Qualitative researchers search for multiple interpretations by considering diverse voices (readers), alternative perspectives (from different ideological positions), oppositional readings (critiques), or varied uses of the texts examined (by different groups). This conflicts with the measurement model of the natural sciences—the assignment of unique measures, typically numbers, to distinct objects—but not with content analysts’ ability to use more than one context for justifying multiple inferences from texts.

- Qualitative researchers support their interpretations by weaving quotes from the analyzed texts and literature about the contexts of these texts into their conclusions, by constructing parallelsisms, by engaging in triangulations, and by elaborating on any metaphors they can identify. Such research results tend to be compelling for readers who are interested in the contexts of the analyzed texts. Content analysts, too, argue for the context sensitivity of their designs (or take this as understood), but they compel readers to accept their conclusions by assuring them of the careful application of their design.

- Qualitative researchers tend to apply criteria other than reliability and validity in accepting research results. It is not clear, however, whether they take this position because intersubjective verification of such interpretations is extraordinarily difficult to accomplish or whether the criteria they propose are truly incompatible with the making of
abductive inferences from texts. Among the many alternative criteria qualitative scholars have advanced, Denzin and Lincoln (2000, p. 13) note, are trustworthiness, credibility, transferability, embodiment, accountability, reflexivity, and emancipatory aims.

Given the above, qualitative approaches to text interpretation should not be considered incompatible with content analysis. The recursion (hermeneutic circle) shown in Figure 4.2 is visible in Figure 4.3 as well, although the former figure provides more details and is limited to the design phase of a content analysis. Multiple interpretations are not limited to qualitative scholarship either. Content analysts can adopt multiple contexts and pursue multiple research questions. The researchers' reflexive involvement—systematically ignored in naturalist inquiries, often acknowledged in qualitative scholarship—manifests itself in the awareness that it is content analysts who construct contexts for their analysis, acknowledging the worlds of others, in the pursuit of their own research questions and in the adoption of analytical constructs based on available literature or prior knowledge about the contexts of given texts. Whether a close but uncertain reading of small volumes of text is superior to a systematic content analysis of large bodies of text is undecidable in the abstract.

![Figure 4.3 Qualitative Content Analysis](image)

DESIGNS PREPARATORY TO CONTENT ANALYSIS

Making data—describing what was seen, heard, or read—is relatively easy. Content analyses succeed or fail, however, based on the validity (or invalidity) of the analytical constructs that inform their inferences. Once established,
analytical constructs may become applicable to a variety of texts and may be passed on from one analyst to another, much like a computational theory concerning the stable features of a context. Below, I discuss three ways of establishing analytical constructs.

4.2.1 Operationalizing Knowledge

Content analysts, by their very ability to read and have an interest in given texts, acknowledge at least cursory knowledge of their sources: who writes, reads, appreciates, or uses the texts; what the texts typically mean and to whom; what institutionalized responses are possible and likely; and what makes the texts hang together. Knowledge of this kind, unclear as it may seem in the beginning, concerns the stable features surrounding texts. Figure 4.4 suggests that such knowledge needs to be rearticulated into an inference mechanism. Without a clear conception, that procedure may not qualify as a “design.” I provide more specific discussion of this process in Chapter 9, but because the three preparatory designs all yield the same result, an analytical construct, I present them here for comparison.

![Diagram: Operationalizing Expert Knowledge](image)

Figure 4.4 Operationalizing Expert Knowledge

Operationalizing available knowledge may be as simple as equating the frequency with which two concepts co-occur and the strength of the association between the two concepts in an author’s mind. Other examples are building linguistic knowledge into the dictionary of a computer program, formulating an algorithm that accounts for propositions found in the message effects literature, and writing a computer program for tracing the linguistic entailments through a body of texts. Such operationalizations must be justified, of course, and available theory, literature, or acknowledged experts may suffice.
Testing Analytical Constructs as Hypotheses

The most traditional way to come to a valid analytical construct is to test several mutually exclusive hypotheses (conceivable constructs) of text-extratextual relations and let empirical evidence select the most suitable one. This is how researchers establish psychological tests, validate behavioral indices, and develop predictive models of message effects. Once the correlations between textual and extratextual features are known, content analysts can use these correlations to infer extratextual correlates from given texts—provided the correlations are sufficiently determinate and generalizable to the current context. This is why we speak of stable or relatively enduring relations operating in the chosen context. Osgood (1959), for example, conducted word-association experiments with subjects before building the correlation he found between word co-occurrences in text and patterns of recall into his contingency analysis. In a carefully executed study, Phillips (1978) established a correlation between reports of suicides of important celebrities and the fatality rate due to private airplane crashes. He found that the circulation of such suicide reports did predict an increase in airplane crashes. Whether such an index has practical consequences is another matter.

To test such statistical hypotheses, one must have large enough sample sizes and make sure that the resulting generalization holds in the current content analytical context as well. This design therefore applies only to situations in which the research questions are asked frequently and the relations between texts and the answers to these questions are stable, not unique (see Figure 4.5).

![Diagram showing the process of testing analytical constructs as hypotheses](image)

Figure 4.5 Testing Analytical Constructs as Hypotheses

Developing a Discriminant Function

This design proceeds iteratively: The analyst compares inferences from a content analysis of text with relevant observations of the context and uses any
discrepancies found to alter incrementally the relevant parts of the analysis, typically its analytical construct. Through this process, the design converges toward a "best fit." This is how intelligent content analysts learn from their failures, as did the Federal Communications Commission propaganda analysts during World War II, who simply became better analysts with time (George, 1959a).

More interesting, however, are the procedures involved in this process. For example, to help teachers who must grade large numbers of essay exams, software has been developed that can be taught to distinguish, in students' written answers to exam questions, particular words and phrases that correlate with grades assigned by the instructor on a subset of exams; eventually, the software can assign grades without further human involvement. Houle (2002) describes artificial intelligence experiments with so-called support vector machines (SVMs), which can be trained within a few seconds on 30,000 documents to develop easily comprehensible rules that distinguish whether similar documents have or do not have a given property. He reports accuracy rates as high as 90% in the SVMs' distinguishing Associated Press news wire stories in about 30 categories and as low as 60% in their distinguishing medical papers in more than 1,000 categories. In current content analyses, paths to discriminant functions are provided by neuronal networks that "learn" the most successful connections between texts and selected contextual variables (see Chapter 12, section 12.5.2) and by traditional discriminant analyses that improve the accuracy of answers to questions by combining features of text best suited to distinguish among them. Even regression analyses that attempt to predict extratextual (and dependent) variables by identifying their textual (and independent) predictors may be mentioned here as a one-step process (see the discussion of LIWC in Chapter 12, section 12.5.1). Processes that converge to a discriminant function are iterative and circular, as shown in Figure 4.6. Measured discrepancies between proposed

Figure 4.6 Developing a Discriminant Function

.answers and validating evidence (observations) cause the discriminant function (the analytical construct in a content analysis) to reduce these discrepancies the next time around.

DESIGNS EXCEEDING CONTENT ANALYSIS

Unfortunately, starting with Berelson’s (1952) account, the content analysis literature is full of insinuations that content analyses are aimed at testing scientific hypotheses, which brings us back to the notion of content as something inherent in or indistinguishable from text, a conception we have abandoned (see Chapter 2). According to the definition of content analysis employed in this volume, content analysts rely on hypothetical generalizations in the form of analytical constructs. But the test of these generalizations lies in their effects. It comes after content analysts have answered their research questions, made their abductive inferences, or interpreted their texts systematically. For example, to test a hypothesis concerning the behavioral correlates of anxiety, one must know the level of anxiety and separately observe the behavioral correlates of interest. By inferring the level of anxiety from an individual’s talk—from accounts of feelings, distress vocabulary, or speech disturbances (Mahl, 1959)—the content analysis becomes a necessary part of a larger research effort. Despite what Figure 4.1 might suggest, content analyses do not need to stand alone, and they rarely do. Below, I briefly discuss three research designs in which content analysis is instrumental.

Comparing Similar Phenomena Inferred From Different Bodies of Texts

In this design, researchers have reasons to draw distinctions within a body of text and apply the same content analysis to each part (see Figure 4.7). For example, to study speeches made before, during, and after a given event—or trends—analysts must distinguish texts according to time periods. To compare the treatment of one event in different media, analysts would have to distinguish texts by source. To examine how candidates for a political office tailor their promises to different audiences, analysts would want to distinguish texts according to audience demographics. And to test hypotheses regarding the impacts of competition between newspapers on the papers’ journalistic qualities, analysts would distinguish texts by how their sources are situated. What content analysts compare—the hypotheses they test—in this design do not concern differences among textual properties, but differences among the inferences drawn from texts, which are a function of the assumed context, not directly observed.
Testing Relationships Among Phenomena Inferred From One Body of Texts

In this design, the researcher analyzes one body of text from different perspectives, with reference to different contexts, through different analytical constructs, or addressing different dimensions of meaning, and then correlates the results (see Figure 4.8). In behavioral research, such separately inferred phenomena tend to appear as different variables, which can be compared, correlated, or subjected to hypothesis testing. On a micro level, examples of such designs are found in analyses of attributions (multiple adjectives that qualify nouns), co-occurrences of concepts (inferred from word co-occurrences), KWIC lists (keywords in their textual contexts), contingencies (Osgood, 1959), and conversational moves (adjacency pairs or triplets). On a macro level, examples include efforts to understand how public concerns—crime, environment, health, unemployment, and politics—compete with or stimulate each other in the mass media. Such designs also enable an analyst to compare readings of the same texts by readers of different genders or readers from divergent socioeconomic, educational, ethnic, or ideological backgrounds. Here, the content analyst would define diverse contexts in reference to which texts are being read and analyzed.
Testing Hypotheses Concerning How Content Analysis Results Relate to Other Variables

Typically, this kind of design brings communicational or symbolic and behavioral variables together. For example, the cultivation hypothesis, which asserts that there are correlations between media coverage and audience perceptions, calls for comparing the results of a content analysis of mass-media presentations with interview data on audience members’ perceptions of everyday reality. Gerbner and his colleagues have explored the relationship between the “world of TV violence” and how TV audiences perceive the world outside of television (see, e.g., Gerbner, Gross, Morgan, & Signorielli, 1995). In comparing newspaper coverage of crime with crime statistics and public opinion, Zucker (1978) found that the frequency of crime reports in the media correlated more highly with public opinion than with official crime statistics. Conversation analysts usually are satisfied with their own accounts of what they see in the transcripts of naturally occurring conversations; thus their approach conforms to the design illustrated in Figure 4.8. However, if they were to relate their interpretations to participants’ awareness of the phenomena being inferred, then they would compare inferences from texts with other accounts. Such designs have three primary aims:
To provide variables about the nature of communications that enable the testing of hypotheses concerning the causes, correlates, and effects of such communications.

To enrich indicators of observed behavioral phenomena by adding measures that concern the meanings of these phenomena (multiple operationalism), especially concerning individuals' perceptions or interpretations of social phenomena, which cannot be observed as such.

To substitute more economical measures for measures that are cumbersome (for example, using content analysis of TV news instead of surveys of what the public knows).

This design is represented in Figure 4.9.

Figure 4.9 Testing Hypotheses Concerning Relations Between Observations and Inferences From Texts

I should emphasize here that actual research designs need not conform to any one distinguished above. Researchers can combine designs to obtain more complex forms that embrace many variables, and they can use any design in tandem with other techniques. There is no methodological limit to the use of content analysis in large social research projects.